, ,

Ejercicios resueltos de √°rbol de decisiones en Excel

Si estas buscando aprender más sobre toma de decisiones; quédate, aquí te presentamos 5 ejercicios resueltos de árbol de decisiones en Excel con sus respectivos archivos para descargar.

Ejercicios resueltos de √°rbol de decisiones en Excel

En estos ejercicios utilizamos el complemento de excel Simple Decision Tree; si a√ļn no lo tienes, primero debes revisar esta entrada:




3 excelentes complementos de excel para hacer un √°rbol de decisiones

Encuentra mas ejercicios en: Ejercicios Resueltos de árboles de decisión

Ejercicio 1:

Benjamin Moses, jefe de ingenieros de Offshore Chemicals, Inc., tiene que decidir sobre la conveniencia de construir una nueva planta de procesamiento basada en una tecnolog√≠a experimental. Si la nueva planta funciona bien, la compa√Ī√≠a obtendr√° una utilidad neta de $20 millones. Si la nueva planta fracasa, la compa√Ī√≠a perder√° $10 millones. Benjamin calcula que la probabilidad de que la nueva planta funcione satisfactoriamente es de 40%.

¬ŅQu√© decisi√≥n debe tomar Benjamin Moses?

Solución 1:

Elaboramos el √°rbol de decisi√≥n seg√ļn las opciones que nos muestra el problema:

Ejercicios resueltos de √°rbol de decisiones en Excel

En este ejercicio no tenemos mayor inconveniente para hallar el valor de los nodos terminales; debido a que el enunciado los indica de forma directa. 

De acuerdo al gráfico, inferimos que la mejor opción es construir la planta. Puedes descargar el archivo de la solución aquí: Ejercicio 1



Ejercicio 2:

Una planta manufacturera ha alcanzado su plena capacidad. Ahora, la compa√Ī√≠a tiene que construir una segunda planta, ya sea peque√Īa o grande, en un lugar cercano. La demanda futura podr√≠a ser alta o baja. La probabilidad de que sea baja es de 0.3. Si la demanda es baja, la planta grande tiene un valor presente de $5 millones y la planta peque√Īa, de $8 millones. Si la demanda es alta, a la planta grande corresponde un valor presente de $18 millones y a la planta peque√Īa, un valor presente de s√≥lo $10 millones. Sin embargo, la planta peque√Īa puede ampliarse despu√©s en caso de que la demanda resulte ser alta, para alcanzar un valor presente de $14 millones.

  1. Dibuje un √°rbol de decisiones para este problema.
  2. ¬ŅQu√© debe hacer la gerencia para obtener el beneficio esperado m√°s alto?

Solución 2:

Elaboramos el √°rbol de decisi√≥n seg√ļn las opciones que nos muestra el problema:

Ejercicios resueltos de √°rbol de decisiones en Excel

En este ejercicio no tenemos mayor inconveniente para hallar el valor de los nodos terminales; debido a que el enunciado los indica de forma directa. 

De acuerdo al gráfico, inferimos que la mejor opción es construir una planta grande desde el inicio. Puedes descargar el archivo de la solución aquí: Ejercicio 2

Ejercicio 3:

Una constructora encontró un terreno que quiere adquirir para construir en él más adelante. En la actualidad, el terreno está clasificado para contener cuatro casas por acre, pero piensa solicitar un cambio de clasificación. Lo que construya depende de la autorización del cambio que piensa solicitar y del análisis que usted haga de este problema para aconsejarla. Con la información del problema y la intervención de usted, el proceso de decisión se reduce a los costos, opciones y probabilidades siguientes:

Costo del terreno: 2 millones de dólares.

Probabilidad de cambio de clasificación: 0.60.

Las situaciones que se pueden presentar son:

    • Si el terreno se reclasifica habr√° 1 mill√≥n de d√≥lares de costos adicionales por concepto de nuevas calles, alumbrado, etc√©tera.
    • Si el terreno se reclasifica el contratista debe decidir si construye un centro comercial o 1 500 departamentos, como un plan tentativo muestra que ser√≠a factible.



  • En caso decidan construir un centro comercial, existe 70% de probabilidad de que lo pueda vender a una cadena de tiendas de departamentos por 4 millones de d√≥lares m√°s que su costo de construcci√≥n, excluyendo el costo del terreno; y existe 30% de probabilidad de que lo pueda vender a una compa√Ī√≠a aseguradora por 5 millones de d√≥lares por encima de su costo de construcci√≥n (tambi√©n excluyendo el terreno).
  • En cambio, si en lugar del centro comercial decide construir los 1 500 departamentos, su c√°lculo de las probabilidades de utilidad son: 60% de probabilidad de vender los departamentos a una compa√Ī√≠a de bienes ra√≠ces por 3 000 d√≥lares cada uno por encima de su costo de construcci√≥n; 40% de probabilidad de que solo obtenga 2 000 d√≥lares de cada uno sobre su costo de construcci√≥n (los dos excluyen el costo del terreno).
  • Si el terreno no se reclasifica, se cumplir√° con las restricciones existentes de la clasificaci√≥n actual y simplemente construir√° 600 casas, en cuyo caso espera ganar 4 000 d√≥lares sobre el costo de construcci√≥n por cada una (excluyendo el costo del terreno).

Prepare un árbol de decisión del problema y determine la mejor solución y la utilidad neta esperada.

Solución 3:

Elaboramos el √°rbol de decisi√≥n seg√ļn las opciones que nos muestra el problema:

Ejercicios resueltos de √°rbol de decisiones en Excel

En la parte final del √°rbol puedes ver dos columnas que representan la utilidad:

  • La utilidad bruta representa la utilidad de la empresa en cada nodo, sin contar los costos del terreno.
  • La utilidad neta, es la utilidad de la empresa descontando los costos del terreno. Los c√°lculos de los nodos intermedios se obtienen con los valores de esta columna.

De acuerdo al gráfico, inferimos que la mejor opción es adquirir el terreno; y en caso se reclasifique, se debe construir un centro comercial. Puedes descargar el archivo de la solución aquí: Ejercicio 3

Ejercicio 4:

McBurger, Inc., desea redise√Īar sus cocinas para mejorar¬†la productividad y la calidad. Tres dise√Īos, denominados K1, K2 y K3, est√°n bajo consideraci√≥n. Sin importar cu√°l dise√Īo se use, la demanda diaria de emparedados en un restaurante t√≠pico McBurger es de 500. Producir un emparedado cuesta $1.30. Los emparedados no defectuosos se venden en promedio a $2.50 cada uno; los defectuosos no se pueden vender y son desechados.

La meta es elegir un dise√Īo que maximice la ganancia esperada en un restaurante t√≠pico durante un periodo de 300 d√≠as. Los dise√Īos K1, K2 y K3 cuestan $100,000, $130,000 y $180,000, respectivamente y se esperan los siguientes resultados:

  • Bajo el dise√Īo¬†K1, hay una probabilidad de 0.80 de que 90 de cada 100 emparedados sean no defectuosos, y una probabilidad de 0.20 de que 70 de cada 100 sean no defectuosos.
  • Con el dise√Īo K2, hay una probabilidad de 0.85 de que 90 de cada 100 emparedados sean no defectuosos, y una probabilidad de 0.15 de que 75 de cada 100 sean no defectuosos.
  • Bajo el dise√Īo K3, hay una probabilidad de 0.90 de que 95 de cada 100 emparedados sean no defectuosos, y una probabilidad de 0.10 de que 80 de cada 100 sean no defectuosos.

¬ŅCu√°l es el nivel de ganancia esperado para el dise√Īo que alcanza el m√°ximo nivel de ganancias esperadas durante 300 d√≠as?

Solución 4:

Elaboramos el √°rbol de decisi√≥n seg√ļn las opciones que nos muestra el problema:

Ejercicios resueltos de √°rbol de decisiones en Excel

En la parte final del √°rbol puedes ver dos columnas con las siguiente denominaciones:

  • Los ingresos de cada nodo, que se calculan de la siguiente manera:

(Demanda Diaria) x (N¬į de D√≠as) x (Precio de Venta) x (Fracci√≥n de No defectuosos)

(500) x (300) x (2.50) x (Fracción de No defectuosos) 

  • El valor neto, es la utilidad neta de cada nodo restando los ingresos menos los costos. Los costos se calculan de la siguiente manera:

Costo de Dise√Īo + [(Demanda Diaria) x (N¬į de D√≠as) x (Costo de Producci√≥n)]

Costo de Dise√Īo + (500) x (300) x (1.30)

Los c√°lculos de los nodos intermedios se obtienen con los valores de la √ļltima columna (Valor Neto).

De acuerdo al gr√°fico, inferimos que la mejor opci√≥n es elegir el dise√Īo K1. Puedes descargar el archivo de la soluci√≥n aqu√≠:¬†Ejercicio 4

Ejercicio 5:

Los negocios de Acme Steel Fabricators han sido muy pr√≥speros en los √ļltimos cinco a√Īos. La compa√Ī√≠a fabrica una amplia gama de productos de acero, como barandales, escaleras y marcos de acero estructural ligero. El m√©todo manual vigente para manejo de materiales ocasiona un exceso de inventario y congestionamientos. Acme est√° considerando si debe comprar un sistema de transporte que pende de un riel, o un veh√≠culo montacargas, para incrementar su capacidad y mejorar su eficiencia manufacturera.

Los resultados anuales del sistema, antes de impuestos, dependen de la demanda futura. Si la demanda se mantiene en el nivel actual, lo cual tiene una probabilidad de 0.50, el ahorro anual que producir√° el transportador elevado ser√° de $10,000. Si la demanda aumenta, el transportador permitir√° ahorrar $25,000 al a√Īo por la eficiencia operativa, adem√°s de las nuevas ventas. Finalmente, si la demanda cae, el transportador provocar√° una p√©rdida anual estimada en $65,000.

Se estima una probabilidad de 0.30 de que la demanda sea alta y de 0.20 de que sea baja.

Si se compra, el montacargas, los resultados anuales ser√°n de $5,000 si la demanda no cambia, $10,000 si la demanda aumenta y ‚Äď$25,000 si la demanda cae.

  1. Dibuje un √°rbol de decisiones para este problema y calcule el valor esperado de los resultados de cada alternativa.
  2. ¬ŅCu√°l es la mejor alternativa, con base en los valores esperados?

Solución 5:

Elaboramos el √°rbol de decisi√≥n seg√ļn las opciones que nos muestra el problema:

Ejercicios resueltos de √°rbol de decisiones en Excel

En este ejercicio no tenemos mayor inconveniente para hallar el valor de los nodos terminales; debido a que el enunciado los indica de forma directa. 

De acuerdo al gráfico, inferimos que la mejor opción es adquirir un montacargas. Puedes descargar el archivo de la solución aquí: Ejercicio 5


Reflexión Final

Como puedes ver, el usar Simple Decision Tree en Excel facilita enormemente la elaboración de nuestros árboles de decisiones.

Si tienes alguna duda al respecto te invitamos a dejarla en los comentarios. Finalmente, si deseas revisar ejercicios resueltos sobre otros temas, puedes ubicarlos aquí: Ejercicios Resueltos.


Referencias:

Los ejercicios presentados han sido tomados de los siguientes libros:

  • Chase, R. & Jacobs, F. (2014). Administraci√≥n de operaciones. Producci√≥n y cadena de suministro (Decimotercera ed.). Mexico, D.F.: McGraw-Hill.
  • Heizer, J., & Render, B. (2014). Principios de Administraci√≥n de Operaciones (Novena ed.). Mexico, D.F.: Pearson Educaci√≥n.
  • Krajewski, L., Ritzman, L. & Malhotra M, (2008). Administraci√≥n de Operaciones. Procesos y Cadena de Valor (Octava ed.). Mexico, D.F.: Pearson Educaci√≥n.